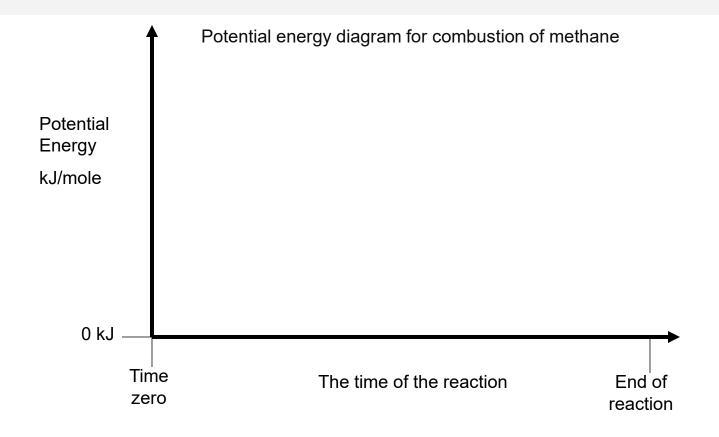
Kinetics Class Notes Some reactions are fast, like the very first one you	saw on the first day. Remember the synthesis of water?
1. Hydrogen gas + oxygen gas + a touch of heat	
Some are rather slow, remember the decomposition	
2. Hydrogen peroxide →	+ +
That second one was SOOOOOO SLOOOOWW	WWWW it took a <u>catalyst</u> to make it happen!
3. The catalyst was potassium iodide, a white salt.	Write it in the equation where it belongs
	(put it there now)
4. The catalyst is not a o	r a
5. Kinetics is the part of chemistry that studies the	eof
6. We will again examine reactions that absorb en	nergy to occur, called
7. And their opposites, reactions that emit energy	as a product, called
One of the simplest reactions we know is the comb	oustion of methane.
$CH_{4(G)} + 2O_{2(G)} \rightarrow$	$2H_2O_{(G)} + CO_{2(G)} + energy$
We know a lot about this re	eaction too, let's start naming things:
8. This reaction is, it's	, and
the heat is written with the	·
	for this reaction is table I).
9. The forward reaction is	because energy is a
10. At the bottom of Table I it says that	
11. The mole ratio of this equation would be:	
The thermochemical mole ratio would be	
12. Why is this chemical reaction irreversible?	

Thi	s reaction is different: $2H_2O_{(L)} + e^{it}$	$nergy \rightarrow O_{2(G)} + 2H$	2(G)	
14.	For starters, since energy is a	·		
	this reaction is			
15.	Table I shows this:		it's	(?)
16.	Wait a second, is this reaction even on ta	ble I?		
1.5	THE STATE OF THE S		0	
17.	The	of water, is reversed	from table I, so the ΔH for this	S 1S
18.	For this decomp reaction: $\Delta H =$			
19.	This reaction is the opposite from table I	, energy is a		

This reaction is _____

	Reactions from table I	Actual ΔH	Exo or endo
ex	$2C_8H_{18(L)} + 25O_{2(G)} \rightarrow 16CO_{2(G)} + 18H_2O_{(G)}$		
20	$N_{2(G)} + O_{2(G)} \rightarrow 2NO_{(G)}$		
21	$2C_{(S)} + H_{2(G)} \rightarrow C_2H_{2(G)}$		
22	$4Al_{(S)} + 3O_{2(G)} \rightarrow 2Al_2O_{3(S)}$		
23	$C_3H_{8(G)} + 5O_{2(G)} \rightarrow 3CO_{2(G)} + 4H_2O_{(G)}$		
24	$CO_{2(G)} \rightarrow C_{(S)} + O_{2(G)}$		
25	$NaOH_{(S)} \xrightarrow{H_2O} Na^{+1}_{(AQ)} + OH^{-1}_{(AQ)}$		
26	$2NH_{3(G)} \rightarrow N_{2(G)} + 3H_{2(G)}$		


27. Time and	
28. Time is	
29. Rate is	
30≠	
31. Rate has a weird unit of	or
The factors that affect the rate of a chemic	cal reaction (NOT the time it takes)
32	– hotter usually means the reaction will happen faster
33	– which allows the reactants to react faster
34	more stuff, more chance for a reaction to happen
35. Adding a	
36. Increase in Temperature causes MORE	between the particles.
37. Increase reactant surface area causes MORE	between the particles.
38. Increase the concentration of the reactants c between the particles.	auses MORE
39. Catalysts have but they still speed up chemical reactions.	on the collisions of particles,

Kinetics Class #2: Potential Energy Diagrams are the graphs that show the flow of energy through chemical reactions. They come in 2 flavors, exothermic and endothermic.

40. Write the Law of Conservation of Energy

41. Potential energy diagrams

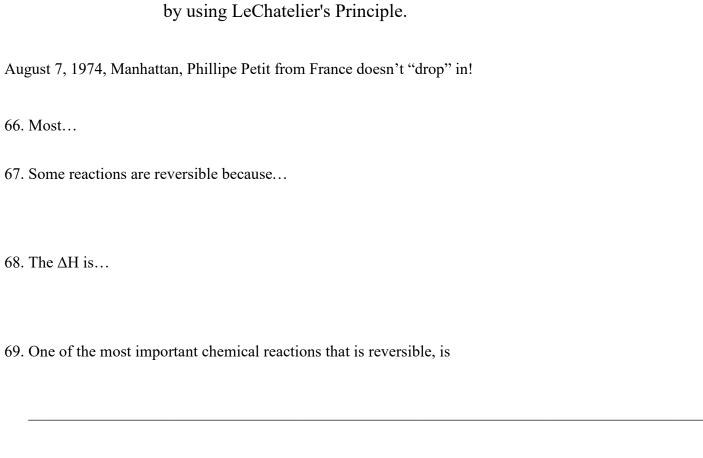
42. Our first potential energy diagram (graph) will be for the first equation on Table I, the combustion of methane (look now)

Make sure this diagr	am has these labels with units, and these definitions below:
43. Potential Energy	y of Reactants:
44. Potential Energy	y of Products:
45. ΔH:	Here the ΔH is
46. Activation Ener	gy (AE):
47. Now we will dra	aw the PE Diagram for the synthesis of C ₂ H ₂ using Table I
1	
48. The "DOT"	

49. Draw the potential energy diagram for the solvation of sodium hydroxide			
W	Write out the equation first:		
		I	
		<u></u>	
50. T	This energy is th	ne	
		More Kinetics Vocabulary	
	Potential	·	
51	energy		
52	Activation complex		
50	Activation		
53	energy		
54	ΔΗ		
	Potential		

55

energy diagram


56.		iagram for the synthesis of Aluminum Oxide. ced thermochemical equation your title.
57.	Draw the PE dia	agram for the solvation of sodium chloride, use dissociation symbols from table I for title.

58. Draw the PE diagram for the combustion of propane.			
TV' (' C1 //2			1 1 1
Kinetics Class #3	Objective: The affe	ct of catalysts of	on chemical reactions
59. Draw 2 PE diagrams, I	EFT IS EXOTHERMIC, righ	t is endothermic.	
combustion of C	$_{6}\mathrm{H}_{12}\mathrm{O}_{6(\mathrm{S})}$		Synthesis of HI _(G)

It doesn't get		
Catalysts		
Catalysts		
61. Go back to the 2 graphs you just drew and add in the affect of the catalyst	by adding in a do	otted line.
62. Catalysts change the number of collisions. Catalysts are s	aid to work in 2 c	lifferent ways.
63. Catalysts lower	er than normal.	of a reaction.
64. Catalysts provide for the reaction to proceed. <i>This lets this reaction happen quicker.</i>		
65. Write out the chemical symbols for our demo: Draw the diagram too		

60. CATALYST A substance...

Kinetics Class #4	Objective: Describing chemical reactions that are in dynamic equilibrium;
	we will learn how to "push" them forward, or reverse
	by using LeChatelier's Principle.

70. Dynamic equilibrium is when the...

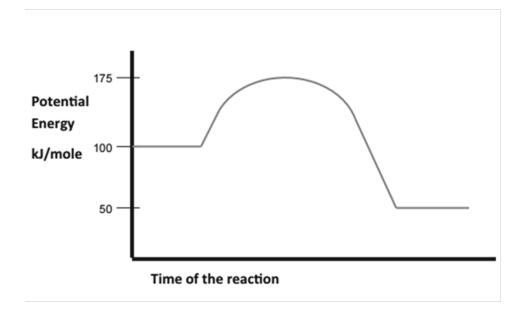
72. It's constantly...

71. In this reaction: $N_{2(G)} + 3H_{2(G)} \iff 2NH_{3(G)} + \text{energy}$ the...

or equal moles, on opposite sides of the	
74. The rate of the forward	
75. It is possible to have equal masses or equal moles on both sides,	
it's only a possibility.	_
76. State LeChatelier's Principle (memorize it too)	
77. You can disrupt an equilibrium by	
78. The chemical system must	
79. What happens if we pump more ammonia into this closed system at equilibrium? nitrogen + hydrogen	

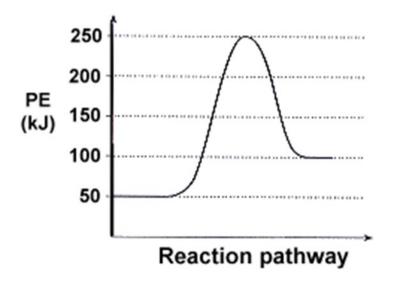
80.	This closed system is in dynamic equilibrium. Let's apply different stresses, and see which way the system will "push" to create a new dynamic equilibrium
	$N_2 + 3H_2 \iff 2NH_3 + energy$
	Add nitrogen
	Add hydrogen
	Add ammonia
	Add energy (heat)
	Add pressure
81.	Remove nitrogen
	Remove hydrogen
	Remove ammonia
	Remove energy (cool system)
	Lower pressure
	·
82.	This IS NOT a real dynamic equilibrium (write symbols)
	but we can make believe, we can apply LeChatelier's Principles to ANY dynamic equilibrium.
83.	The forward reaction is, the reverse is
84.	The forward reaction is, the reverse is
85.	We cannot know

$4Al_{(S)} + 3O_{2(G)} \iff 2Al_2O_{3(S)} + Energy$


86	Add aluminum oxide		
87	Remove oxygen		
88	Remove heat (cool system)		
89	Add aluminum		
90	Add Heat		
91	Increase pressure		
92.	Pressure only effects Pressure does not effect solids, liquids, or aqueous.		
93.	If a stress "stops" or slows down a forward reaction,		
94.	If a stress "stops" or slows down a reverse reaction,		
95.	A new balance, or equilibrium		

This is NOT a real dynamic equilibrium, but we will make believe" because of the double arrows.

$$CH_{4(G)} + 2O_{2(G)} \iff CO_{2(G)} + 2H_2O_{(G)} + energy$$


96		Add methane

Review...

Questions

- 105. Is this an exo or endothermic reaction?
- 106. What is the potential energy of the activated complex?
- 107. What is the PE of the products?
- 108. What is the ΔH ?
- 109. What would be a possible activation energy with a catalyst?

- 110. What is the PE of the reactants?
- 111. What is the activation energy for this reaction?
- 112. Is this reaction exothermic or endothermic?
- 114. What are possible AE values for this reaction with a catalyst?
- 115. What is the ΔH for this reaction?
- 116. Would the ΔH for this reaction change with a catalyst?
- 117. In this dynamic equilibrium... Which way does each stress push the reaction with all of these stresses?

$$3A_{(G)} + B_{(S)} \iff 3C_{(G)} + D_{(G)} + energy$$

Add heat Add B Inc. pressure Remove D Add C

- 118. LeChatelier's Principle is... Chemical systems at equilibrium tend to stay at equilibrium. When a chemical stress is put upon a chemical system in equilibrium, it will shift to relieve that stress, and a new dynamic equilibrium forms.
- 119. Stresses include changes in pressure, temperature, and adding/removing reactants.

120. Of the 4 factors that would that speed up a chemical reaction, three of them work one way, but the 4th factor works a different way. They are
1
2
3
4
ALL FOUR
ALL FOUR
121. ENTROPY
122. PHASES and entropy
123. Three solid compounds are at the same temperature and pressure, which has the most entropy, which has the least entropy, and why?
124. If mountains crumble to the sea, there will still be you and me. (from Thank You, by Led Zeppelin)
125. From the NYS Curriculum:
What's equal in a dynamic equilibrium? The rate of the forward reaction is equal to the rate of the reverse reaction. That's it. There is always the same number of everything, but sometimes the "stuff" is one side of the arrows, or the other. Etc.

Finish up the notes in your mind.